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This work develops a practical real-time identification strategy for advection-
diffusion processes with spatial varying coefficients. A novel multi-model structure
that represents the processes in practical applications is proposed. The multi-model
structure is parameterized as blended linear PDE models. Both the offline centralized
and the online distributed identification algorithms using mobile sensor networks are
proposed. Trajectories for mobile sensor networks in the advection-diffusion field
with spatially varying parameters is found, and distributed control laws to guide the
mobile sensor networks to follow the trajectories while keeping desired formations
are designed. The effectiveness of this proposed method is demonstrated in simula-
tions.
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1. Introduction

In systems with thermal, fluid, or chemical reacting dynamics, parabolic partial differential equa-
tions (PDEs) are often used by researchers to describe the system dynamics. In such equations,
physical parameters such as the diffusion coefficient are often unknown. Thus a need exists for
developing practical and efficient approaches to identify uncertain systems so that predictions
of the system states can be made. Many results have shown that the state prediction of PDEs
have played key roles in services such as weather forecasting, earthquake early detection, and
disaster recovery (Uciński 2004). For instance, a typical advection-diffusion PDE process is the
dispersion of oils from a leakage source into an ambient environment, which results in a plume.
The timely prediction of the propagation phenomenon of oils can be used in tracking the source
and and implementing search/rescue missions (Uciński 2004).

Most existing approaches have only dealt with the identification problem using static sensor
networks (Uciński 2004, Gay and Ray 1995, Krstic and Symshlyaev 2008, Omatu and Matumoto
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1991). However, in missions of modeling a relatively large region, it is often impractical to use
static sensor networks, which require high cost of installing enough static sensors to ensure
the coverage of the entire field (Mourikis and Roumeliotis 2006, Burgard et al. 2005). Instead,
a preferable choice is mobile sensor networks (MSNs). MSNs are composed of robotic agents,
each of which has computational, communication, sensing, and locomotive capabilities (Uciński
2004). Over the past few years, there has been an increasing interest in the use of mobile sensor
networks to detect, monitor, and model the systems that can be described by PDEs (Demetriou
2010, Tang and Ozguner 2005, Campbell and Whitacre 2007, Demetriou and Hussein 2009, You
and Wu 2017, You et al. 2016). The literature Demetriou and Hussein (2009) has illustrated that
a set of mobile sensors can achieve better state estimation performance than a set of immobile
sensors. In You and Wu (2017), a distributed online passive identifier is proposed to estimate the
constant diffusion coefficient of the advection-diffusion PDE using data collected by a mobile
sensor network moving in the field. By combining cooperative filtering and RLS method, in You
et al. (2016), parameter identification for diffusion processes is proposed using mobile sensor
networks. There exist several literatures regarding the state estimation of PDE (see Demetriou
(2010), Demetriou et al. (2014) and references therein).

One important aspect of PDE modeling is how to deal with systems with the spatially varying
plant parameters. In studying the advection-diffusion PDEs with spatially varying coefficients,
one direct approach is to parameterize the parameters using linear or nonlinear functions of the
position variable (Uciński 2004, Uciński and Chen 2005). Because complex nonlinear functions
often appear in the coefficients of the PDE model, intensive computations are required to solve
the PDE in the entire spatial domain using, for example, finite element methods. On the other
hand, indirect approaches exist that employ a linear combination of basis functions to approxi-
mate the advection-diffusion PDE by using the Garlerkin weighted-residual method (Li and Qi
2010). Most of these works suppose the parameters are known or can be estimated in an offline
scheme. The main goal of these existing approaches is focused on how to derive an optimal
sensor trajectory or location of a mobile sensor network to improve the performance of state
estimation. However, in many realistic scenarios, timely state estimation and prediction of the
processes are required while largely untreated in the existing literature. For example, in chem-
ical plume tracking, mobile sensors have no prior knowledge of the diffusion coefficient of the
diffusion process. In this case, it’s preferable that the mobile sensors can estimate the unknown
parameters recursively to provide real-time information while exploring the field.

To realize timely parameter identification and state estimation, this paper aims at developing
a practical and effective model structure to represent the advection-diffusion process with spa-
tially varying diffusion coefficient over a broad operating regime. Motivated by practical iden-
tification practice (Boukhris and Mourot 1999, Murray-Smith and Johansen 1997), we propose
a novel multi-model structure to approximate the general advection-diffusion equation. Based
on this multi-model structure, both the offline centralized and the online distributed parameter
estimation algorithms are developed by using data collected by a group of coordinated mobile
sensors moving in the field. In addition, the trajectory of the mobile sensor network is analyzed
by maximizing the Fisher information matrix and distributed control laws to control the mo-
bile sensor network to estimate and follow the trajectory while keeping a desired formation are
designed.

The rest of the paper is organized as follows. Section II presents the problem formulation.
Section III discusses the parameterization of spatially varying PDE models. Section IV shows
the identification method. Section V designs the optimal trajectory and distributed control law
for the mobile sensor network. Section VI introduces the simulation result, and Section VII
draws conclusions and discusses future work.
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2. Problem formulation

2.1. Advection-diffusion PDE

Consider the following two-dimensional (2D) advection-diffusion process with an unknown s-
patially varying diffusion coefficient defined on a domain Ω = [0,Lx]× [0,Ly] ∈ R2:

∂ z(r, t)
∂ t

+ vT
∇z(r, t) = θ(r)∆z(r, t), r ⊆Ω, (1)

where r = [x,y] is the position, z(r, t) is the concentration function, θ(r) is a smooth function
of the position r, and v is a constant vector representing the flow velocity, which is supposed to
be known through measurements or computation, e.g., solutions of the Saint-Venant equations
(Chang et al. 2014). ∇z(r, t) is the spatial gradient of z(r, t), and ∆ represents the Laplacian
operator. We assume Dirichlet boundary conditions without restriction on the boundary ∂Ω,

z(r, t) = zbc(r, t), r ⊆ ∂Ω. (2)

2.2. Sensor dynamics

Consider a formation of N coordinated sensing agents moving in the field, each of which carries
a sensor that takes point measurements of the field z(r, t). Same as in You and Wu (2017) You
et al. (2016), we assume that the dynamic of the agents is described by a single integrator

ṙi(t) = ui(t), i = 1,2, ...,N. (3)

where ri(t)⊆ R2 is the position, and ui(t)⊆ R2 is the velocity of the ith agent, respectively. As
the agent moves in a field, the position ri(t) is a function of the time t. For simplicity, we drop
the variable t in ri(t) hereafter. We make the following assumption for the sensing agents.

Assumption 2.1 The agent’s sensors can obtain its position ri, the measurement of concentration
value z(ri, t), and the flow velocity v(ri, t).

2.3. Communication

Based on the agents’ information exchange process, we define two different communication
topologies: centralized and distributed communication, which are described in the following,
respectively.

2.3.1. Centralized communication

In a centralized mobile sensor network, we assume that there is a centralized fusion center to
exchange information with each agent. So the communication graph has an all-to-all connection,
which allows communication and information exchange between any pair of agents.

2.3.2. Distributed communication

In a distributed mobile sensor network, we assume that every sensing agent can only commu-
nicate and exchange information with its neighboring agents within a limited communication
range. Hence, it does not have the global knowledge of the network topology. If we consider
the agents as nodes and the communication links as edges, then, the interconnection topology of
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the mobile sensor network can be specified by an undirected graph G = (V,E) with the adjacen-
cy matrix A = [ai j]. Let V = {1, ...,N} be the node set and E ⊆ V ×V be the edge set. Also let
Ni = {i⊆V : ai j 6= 0} denote the neighbor set of the ith robot. We have the following assumption
for the graph G.

Assumption 2.2 The graph G is connected for all t > 0.

The problem is formulated as:

(1) Model the advection-diffusion field using a practical and effective model under Assump-
tion 2.1.

(2) Based on the model, develop an parameter identification algorithm that estimates the
unknown parameter.

(3) Utilizing the identified model, provide real-time state estimation of the advection-
diffusion field.

Rather than parameterizing the spatially varying diffusion coefficient θ(r) using the linear or
nonlinear functions of the position variable (Uciński 2004, Uciński and Chen 2005), which may
lead to intensive computations and differentiability issues in the deviation of online trajectory for
mobile sensor networks, we develop a practical and effective approximation model by interpo-
lating several linear PDE models with constant diffusion coefficients. Based on this multi-model
structure, corresponding parameter identification and state estimation algorithm will be devel-
oped using data collected by a group of coordinated mobile sensors moving in the field.

3. Spatially Varying PDE parameterizations

Figure 1. The illustration of monitoring a practical advection-diffusion process with spatially varying
diffusion coefficient using a mobile sensor network.

To monitor some environmental processes, in many real fields, some static base stations are
already installed at selected locations. For example, in oceanography, some buoys are installed
to test chemical or biological contaminants transporting through subsurface aquifer, which are
illustrated in Fig. 1. When we have no prior information, we also can use K-means clustering
method to compute the positions of the stations. We first divide the whole area Ω into n×n grid
sizes. Then the K-means clustering method is applied to partition the grid map into G disjoint
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subset S j by minimizing the following cost function,

J =
G

∑
j=1

∑
ri∈S j

||ri− c j||2. (4)

At each static base station, there exist several static sensors collecting data. By using these
prior collected data, we can first identify and obtain a PDE model with a constant diffusion
coefficient, which will be referred to as the local linear PDE model. The local linear PDE model
is a good representation of the environmental process in the vicinity of the corresponding static
base station (Li and Qi 2010).

Motivated by the above practical setting and the multi-model structure (Boukhris and Mourot
1999, Murray-Smith and Johansen 1997), in this paper, we propose a multi-model structure to
approximate the advection-diffusion PDE using blended linear PDE models. The basic principle
of this approach is to first identify several local linear PDE models at the fixed setting positions
(the positions of base stations). Then we navigate a group of mobile agents moving in the field to
provide sampling coverage over a large area. Using data collected by the mobile sensor network,
the global PDE model is obtained by interpolation using certain weighting functions. Compared
with the local linear PDE models, the global PDE model represents the process in the whole
region.

We assume that there are p static base stations at locations:

(x1,y1),(x2,y2), ...,(xp,yp)⊆Ω. (5)

In the neighborhood of each base station, we describe the process using a local linear PDE model
with a constant diffusion coefficient,

∂ ẑh(r, t)
∂ t

+ vT
∇ẑh(r, t) = θ

h
∆ẑh(r, t),r ∈ Γ(t),

ẑh(r, t−T ) = z(r, t−T ),r ∈ Γ(t).
(6)

where h = 1,2, ...p, T is the sampling interval, ẑh(r, t) denotes the one step ahead prediction
using the local linear PDE model with the constant diffusion coefficient θ h, Γ(t) ⊆ Ω denotes
the region covered by the mobile sensor network with N agents. It should be noted that Γ(t) is
relatively small compared to Ω.

Then the global PDE model can be obtained by interpolating the local linear PDE models in
(6).

ẑ(r, t) =
p

∑
h=1

η
h(r)ẑh(r, t),r ∈ Γ(t), (7)

where ηh(r),(h = 1,2, ...p), which are static functions of the position r, are weights of the local
linear PDE models.

Remark 1 The global model in (7) will be referred to as the multi-model structure in the fol-
lowing context. It also falls into the multi-model structure (Boukhris and Mourot 1999), where
the weightings are assumed to be functions of so-called characteristic variables or scheduling
variables, which need to be selected by the users. Assume that the model parameters such as the
diffusion coefficient varies as monotone functions of r between each two neighboring static base
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stations. There are several advantages using the weighing functions and local linear PDE mod-
els: (1) the multi-model structure (7) considerably simplifies the task of model identification;
(2) they can model nonlinearities of spatially varying diffusion coefficients; (3) they can reduce
computational cost in the derivation of online trajectory for MSN, which will be illustrated in
Section 5. The capability of this model will be demonstrated in the case study.

To obtain the multi-model structure (7), proper weighting functions should be selected for
the interpolation, which posts an impart on the accuracy of the global model. Several common
weighting functions are available in the literature, for example, linear weight function, poly-
nomial function, cubic spline function, and Gaussian weight function (Huang et al. 2012). A
preferable choice of determining the model weights is Gaussian function, which can achieve a
good fitting performance. The representation of Gaussian weighting functions can be written as

η
h(r) =

αh(r)
∑

p
m=1 αm(r)

, (8)

where

α
h(r) = α

h(x,y) = exp
[
−1

2

(
(
x− xh

σ1
h

)2 +(
y− yh

σ2
h

)2
)]

. (9)

Note that the Gaussian weights are smooth and differentiable at each position. The model
weights in (8) are normalized and in the range of zero to one to avoid negative values.

Obviously, only two parameters (σ1
h ,σ

2
h ) need to be estimated for each weighting function.

The parameter vector to be identified for all weighting functions can be defined as

Θ = [σ1
1 ,σ

2
1 , ...,σ

1
h ,σ

2
h , ...,σ

1
p ,σ

2
p ]. (10)

4. Identification of the multi-model structure

4.1. Local linear PDE model identification at each setting position

In order to identify the multi-model structure, local linear PDE models at each fixed setting posi-
tion should be determined first. If there exist some base stations, one can choose these positions
as the setting positions. Using the data collected in the vicinity of each setting position, all the
parameters θ h can be obtained by using the PDE identification approaches based on static sen-
sor networks, for example, Lyapunov method and certainty equivalence approaches with passive
and swapping identifiers (Symshlyaev and Krstic 2007).

To substantiate the feasibility of the proposed approach, we further consider the situation that
there are no base stations. In this case, additional identification tests are required, which means
we should navigate a group of mobile agents around setting positions to collect data. Then one
can identify the local linear PDE models based on the methods using mobile sensors networks.
Several choices are available in the literature, e.g., online passive identifier (You and Wu 2017),
and the cooperative filtering method (You et al. 2016). In this paper, we adopt the distributed
online passive identifier that we developed in You and Wu (2017) to identify the local linear PDE
model using the mobile sensor networks. We briefly summarise the method using notations in
this paper.

Within a distributed mobile sensor network, consider the ith agent and its neighbors as a group.
Denote Γi(t) ∈ Γ(t) as the region bounded by the ith agent and its neighbors. The boundary of
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the region Γi(t) is ∂Γi(t). As the mobile sensor network moves along a certain trajectory, Γ(t) as
well as Γi(t) move correspondingly. For notational convenience, we drop the variable t in Γ(t)
and Γi(t) hereafter.

Let us define the following notations for the 2D passive identifier in this section:

‖∇z
Γi
‖2 =

∫ ∫
Γi

(
(
∂ z(r, t)

∂x
)2 +(

∂ z(r, t)
∂y

)2
)

dΓi

,
∫ ∫

Γi

∇z(r, t) ·∇z(r, t)dΓi,

(11)

Consider the following passive identifier computed by the ith agent with the associated Γi,
i = 1,2...,N:

∂ z̃h
i (r, t)
∂ t

= θ̂
h
i ∆z̃h

i (r, t)+ γ
2
0 (z(r, t)− z̃h

i (r, t))‖∇z
Γi
‖2,r ∈ Γi, (12)

z̃h
i (r, t) = z(r, t),r ∈ ∂Γi, (13)

with the update law

˙̂
θ

h
i = γ1 ·βi ·Pro j{

∫ ∫
Γi

∇z(r, t) ·∇(z(r, t)− z̃h
i (r, t))dΓi}

+ ∑
j⊆Ni

Wi, j(θ̂
h
j − θ̂

h
i ),

(14)

where h = 1,2, ...p, γ0>0 and γ1>0 are constants, βi ≥ 1 is the ratio between the area of Γ over
the area of Γi, z̃h

i (r, t) represents the estimate of z(r, t) by the ith passive identifer, and θ̂ h
i is the

estimated constant diffusion coefficient computed by the ith agent in the vicinity of the point
x = xh, y = yl . Wi, j are the weights in the Metropolis-Hastings model (Xiao et al. 2006) for
the distributed estimation problem. Based on the received information from the neighbors, the
weights can be calculated as

Wi, j =


1

1+max{d(i),d( j)} if {i, j} ∈ E and i 6= j

1− ∑
(i,h)∈E

Wi,h if i = j

0 otherwise

, (15)

where d(i) denotes the number of the ith robot’s neighbors. Metropolis-Hastings model has the
symmetric and doubly-stochastic properties, which is one of the widely used weighted adjacency
matrices in distributed sensor fusion (Xiao et al. 2006).

In (14), the projection operator (Proj) is defined as:

Proj{ρ}=

{
0 if θ̂i=θ̄ and ρ < 0
ρ else

. (16)

The projection operator is used to maintain the parabolic character of the PDE (1) by ensuring
θ>θ̄>0, where θ̄ is the lower bound of θ̂i.
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With the first term in (14), we aim to reduce the local prediction error. γ1 ·βi > 0 controls the
local information fusion rate. The second term ensures global parameter consensus by summing
over the values of the neighbors.

Remark 2 The passive identifier in (12) is implemented only based on information collected
by a mobile sensor networks moving in the field. The inputs to the identifier (12) are z(r, t),
∇z(r, t), r ∈ Γi, and the boundary condition z(r, t), r ∈ ∂Γi. The inputs can be obtained from
sensor measurements and the outputs of a distributed cooperative Kalman filter. The detail of
the distributed cooperative Kalman filter can be found in our previous paper (You and Wu 2017,
You et al. 2017).

Note that in a centralized network, there is a fusion center that collects and processes data
from all the agents, therefore, the online passive identifier can be directly computed by the
fusion center in a centralized way with Γi replaced by Γ.

We have proved the convergence of parameter estimation in (You and Wu 2017). After the
identification procedure of the local linear PDE model using the data from the corresponding
setting positions, θ̂ h

i can reach consensus on the true parameter θ h.

4.2. Identification of multi-model structure with Gaussian weights

In the previous section, we have shown how to obtain the local linear PDE models. After getting
the local models, in this section, both the centralized and the distributed algorithms are presented
to identify the parameter Θ in (10) of the multi-model structure.

4.2.1. Offline Centralized Identification of multi-model structure

To estimate Θ, nonlinear optimization algorithms, which can minimize the following output
error loss function, are desired:

f (Θ) =

t f

∑
t=1

1
2
[
∫

Γ

z(r, t)−
p

∑
h=1

η
h(r)ẑh(r, t)dΓ(t)]2,r ⊆ Γ(t), (17)

where t f is the terminal time.
To solve the offline centralized optimization problem in (17), several nonlinear numerical

optimization algorithms are available for this purpose, such as Gauss-Newton algorithm, gra-
dient descent method, expectation-maximization algorithms, and Levenberg-Marquardt method
(Dennis 1983, Ljung 1998, Hosseini et al. 2013). In this work, the proximal gradient descent
algorithm is used (Hosseini et al. 2013). That is because it can be readily extended to the online
distributed case, which will be illustrated in the next subsection. The iterative optimization flow
is as follows.

Step 1: Initialize Θ̂0 and iteration count l = 0.
Step 2: Calculate the simulated prediction output error as

ε(r, t,Θ̂l) = z(r, t)−
p

∑
h=1

η
h(r,Θ̂l)ẑh(r, t),r ⊆ Γ. (18)

Step 3: The output error loss function in (17) has the gradient:

f ′(Θ̂l) =

t f

∑
t=1

∫
Γ

Ψ(r, t,Θ̂l)ε(r, t,Θ̂l)dΓ, (19)
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where Ψ(r, t,Θ̂l) is the gradient matrix of ε(r, t,Θ̂l) with respect to Θ, which can be expressed
as:

Ψ(r, t,Θ̂l) =
∂

∂ Θ̂
ε(r, t,Θ̂l)

=



∂

∂σ1
1

ε(r, t,Θ̂l)

∂

∂σ2
1

ε(r, t,Θ̂l)

...
∂

∂σ1
p
ε(r, t,Θ̂l)

∂

∂σ2
p
ε(r, t,Θ̂l)


,r ⊆ Γ.

(20)

By substituting the (8) into (18) and differentiating (18) with respect to σ1
h , we can have the

following gradient term:

∂

∂σ1
h

ε(r, t,Θ̂l) =−(x− xh)
2

(σ1
h )

3 · [
αh(r)

∑
p
m=1 αm(r)

ẑh(r, t)

− αh(r)
(∑

p
m=1 αm(r))2

p

∑
m=1

α
m(r)ẑm(r, t)].

(21)

Similarly,

∂

∂σ2
h

ε(r, t,Θ̂l) =−(y− yh)
2

(σ2
h )

3 · [
αh(r)

∑
p
m=1 αm(r)

ẑh(r, t)

− αh(r)
(∑

p
m=1 αm(r))2

p

∑
m=1

α
m(r)ẑm(r, t)].

(22)

Step 4: The centralized proximal gradient descent iteration is

ν
l+1 = ν

l +gl, (23)

where gl = f ′(Θ̂l); then

Θ̂
l+1 = argmin

Θ̂l
{〈ν l+1,Θ̂l〉}, (24)

l = l +1. Go to Step 2.

4.2.2. Online Distributed Identification of the multi-model structure

In this subsection, we extend our proposed method to an online and distributed setting using
a parallel computing process. This online and distributed algorithm can be applied to a more
realistic distributed comnunication in Section 2.3.2, which features limited communication range
and time varying network topologies. With a distributed multi-agent system, individual agent
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cooperatively optimizes a global objective function. The global objective is to minimize

t f

∑
t=1

ft(Θ) =

t f

∑
t=1

N

∑
i=1

ft,i(Θ)

=

t f

∑
t=1

N

∑
i=1

1
2
[
∫

Γi

z(r, t)−
p

∑
h=1

η
h
i (r)ẑ

h
i (r, t)dΓi]

2,r ⊆ Γi,

(25)

where ft,i(Θ) is a convex cost function associated with agent i and evolves over time steps in an
unpredictable manner. In other words, at time step t, each agent estimates Θ based on the local
information available to it and to its neighbors. In this distributed scheme, ẑh

i (r, t) denotes the
one step ahead prediction of ith agent using the local linear PDE model, which can be written
as:

∂ ẑh
i (r, t)
∂ t

+ vT
∇ẑh

i r, t) = θ
h
i ∆ẑh

i (r, t),r ∈ Γi,

ẑh
i (r, t−T ) = z(r, t−T ),r ∈ Γi.

(26)

To solve the distributed online optimization proposed above, we adapt the Online Distributed
Dual Averaging (ODD) algorithm (Hosseini et al. 2013). The procedures of implementing the
ODD algorithm is described in Algorithm 1.

Algorithm 1 Online Distributed Dual Averaging (ODD) algorithm for Multi-Agents Optimiza-
tion

1: Initialize Θ̂i(0), νi(0) = Θ̂i(0)
2: for t=1 to t f do
3: At time step t, the local objective function

ft(Θ̂(t)) = { ft,i(Θ̂i(t)); f or i = 1, ...,N}
4: Compute subgradient gi(t) = f ′t,i(Θ̂i(t))
5: for Each agent i do
6: Compute the neighborhood average

νi(t +1) = ∑ j∈Ni Pi, jν j(t +1)+gi(t)
where P is doubly stochastic, so that ∑

N
j=1 Pi, j = 1 and ∑

N
i=1 Pi, j = 1

7: Compute the next iterate Θ̄i(t +1):
Θ̄i(t +1) = argmin

Θ̄i

{〈vi(t +1),Θ̄i〉}

8: Run local average
Θ̂i(t +1) = t

t+1 Θ̂i(t)+ 1
t+1 Θ̄i(t +1)

9: end for
10: end for

5. Distributed Online Trajectory Design for the Multi-model Structure

We deploy a mobile sensor network in the field to collect information along its trajectory to
identify the parameter of the multi-model structure. Many literatures have illustrated that the lo-
cations or trajectories of sensors have a great influence on the estimation results (Uciński 2004).
Hence, it is desirable to optimize certain criteria to determine optimal locations or trajectories
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for identifying the multi-model structure (7). In order to design the optimal trajectory, we use
the optimization criterion based on the Fisher information matrix (FIM) (Uciński 2004), which
describes the amount of information that the measurements carry about the unknown parameter-
s. The criterion has been widely used in optimum experimental design theory for DPSs (Uciński
2004). It should be noted that we only present a distributed online trajectory design in this work.
In the centralized network case, the global information is available for each agent. Therefore,
the design can be readily and straightforwardly extended to the centralized scheme.

In the distributed scheme, the output of the multi-model structure for the ith agent is

ẑi(r, t) =
p

∑
h=1

η
h
i (r)ẑ

h
i (r, t),r ∈ Γi. (27)

Taking the derivative of ẑi(r, t) with respect to the parameter Θ̂, we obtain

gi(r, t) =
(

∂ ẑi(r, t,Θ̂l)

∂ Θ̂l

)T

,r ⊆ Γi, (28)

where the definition of ∂ ẑi(r,t,Θ̂l)

∂ Θ̂l is similar to ∂ ε̂i(r,t,Θ̂l)

∂ Θ̂l in (20) and thus omited here.
Then the FIM of the ith agent at position ri can be written down as:

M(ri) =
1
tp

∫ t+tp

t
det[gi(r, t)gT

i (r, t)]dt, i = 1, ...,N, (29)

where tp is the predictive time interval.
To design the distributed online trajectory, we obtain the velocity of the formation center by:

ṙc = τ · ∑
N
i=1 M(ri) · rd

iF

∑
N
i=1 M(ri)

= τ ·
1
N ∑

N
i=1 M(ri) · rd

iF
1
N ∑

N
i=1 M(ri)

, (30)

where τ is the step size, rd
iF is a normalized vector with the direction pointing from the formation

center to the ith agent. The illustration of the setting of the rd
iF is shown in Fig. 2.

Remark 3 We can see from (30) that ṙc follows the direction of the FIM average value, which
equals the average of M(ri) · rd

iF divided by the average of M(ri). By running an average consen-
sus algorithm, each agent can obtain the moving direction of the formation center distributively
and simultaneously.

After obtaining the moving direction of the virtual formation center, distributed formation
control can be applied for the agent level control. Motivated by Zhang and Leonard (2010), Wu
and Zhang (2012), Ren and Beard (2008), we apply the following consensus tracking algorithm
for each agent,

ui = ṙi = ṙd
i −λi(ri− rd

i )−
N

∑
j=1

ai j[(ri− rd
i )− (r j− rd

j )], (31)

where ui is the control input for the ith robot, λi is a positive scalar, ai j is the (i, j) entry of the
N×N adjacency matrix associated with the interaction topology, ri represents the ith agent’s
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Figure 2. A formation composed of eight agents with a virtual formation center.

actual position and rd
i represents the desired position of the ith agent, which is denoted as,

rd
i = rc +Ri · rd

iF , (32)

where rd
iF represents the desired deviation of the ith agents relative to the virtual center rc and Ri

is the transformation matrix from body frame to inertia frame. In a 2D setting, Ri can be defined

as
[

cos(θci) −sin(θci)
sin(θci) cos(θci)

]
, where θci is the orientation between the body frame and inertia frame.

Fig. 2 shows an illustrative example of the virtual center approach with a formation composed
of eight agents, where C0 represents the inertial frame and CF represents a body frame located
at the virtual center rc with an orientation θci relative to C0.

6. Simulation

For the demonstration of the proposed distributed algorithm, we consider a spatially distributed
process in (1) with impulse initial condition at point (50,50). The spatially varying diffusion
coefficient θ(r) is illustrated in Fig. 3. The whole domain is on the rectangle 0 ≤ x ≤ 100,
0≤ y≤ 100. We implemented an implicit ADI finite-difference scheme in MATLAB, with 100-
by-100 spatial grid.

Figure 3. The spatially varying diffusion coefficient θ(r).

The selection of the setting positions is based on trial-and-errors. In this case study, five set-
ting positions are used. The five setting positions are at (50,25), (50,75), (50,50), (25,50),
and (75,50). Eight mobile agents move around the corresponding setting positions and run
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the distributed online passive identifier (12)∼(14). After identification, the estimates of the d-
iffusion coefficients at the five setting locations are θ̂(50,25) = 0.5420, θ̂(50,75) = 0.5420,
θ̂(50,50) = 1.5, θ̂(25,50) = 0.9621, and θ̂(75,50) = 0.9621.

After obtaining the local linear PDE models, we select four different initial locations of the
agents and adopt the control law (31) for each agent to find the optimal trajectory. The optimal
trajectories of the mobile sensor network with four different initial positions are shown in the
Fig. 4.

(a) (b)

(c) (d)

Figure 4. Optimal trajectories of the mobile sensor network with different initial positions.

Using the measurements along the optimal trajectories, the global multi-model PDE is identi-
fied by interpolating the five local linear PDE models. The initial value of the parameter vector
is [9 9 9 9 9 9 9 9 9 9]. Following the procedures described in Section V, all parameters can
be estimated. For system parameter identification, the mean square errors (MSE) of the predic-
tions of the identified model against the real process data are calculated based on the following
equation:

MSEΘ =
∑

t f
t=1 ∑

N
i=1
∫

Γi
[z(r, t)− ẑi(r, t)]2dΓi

t f
,r ⊆ Γi. (33)

The mean square error of the online distributed optimization procedure is illustrated in Fig.
5. We can observe that the mean square error is gradually reduced as mobile agents collect
more measurements and learn about the process. Table 1 compares the estimated parameters for
each weighting function and the MSE of offline centralized optimization and online distributed
optimization method. As we can observe from the table that, the online distributed method can
achieve very similar performance as the offline centralized one.

Moreover, to achieve a fair validation of the identified model, additional data are generated
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Figure 5. Mean square error of the online distributed optimization procedure

Table 1. The comparisons between Offline cen-
tralized and Online distributed optimization.

Θ Offline centralized Online distributed

σ1,1 10.2315 11.0224
σ1,2 12.2108 11.8405
σ2,1 9.2905 9.3588
σ2,2 12.0693 11.4153
σ3,1 7.7377 6.9548
σ3,2 5.8747 4.6665
σ4,1 10.0448 9.3490
σ4,2 9.2352 9.0354
σ5,1 9.9517 9.6827
σ5,2 8.7102 7.8066

Table 2. Mean square error comparison using the validation trajectory.

Models MSE

Linear PDE (constant θ=0.5420) 9.284×10−3

Linear PDE (constant θ=0.9621) 8.559×10−3

Linear PDE (constant θ=1.5) 30.479×10−3

Multi-model PDE without optimization (Initial value) 5.556×10−3

Multi-model PDE with offline centralized optimization 3.064×10−3

Multi-model PDE with online distributed optimization 3.751×10−3

throughout a new validation trajectory that is different from the one in the previous simulation.
In other words, the feasibility of the identified multi-model structure is verified by data attained
from a different trajectory, which is illustrated in Fig. 6. Mean square error comparison along the
valid trajectory is shown in Table 2. One can see that the identified multi-model structure with
Gaussian weighting functions can effectively approximate the actual spatial varying advection-
diffusion process. The proposed multi-model structure can achieve much better performance
than the linear PDE model.

7. Conclusions

In this paper, we propose a novel multi-model structure to approximate the advection-diffusion
process with spatially varying coefficients. It is demonstrated that under the proposed frame-
work, both online distributed state estimation and parameter identification problem, and online
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Figure 6. The validation trajectory for the mobile sensor network.

optimal trajectory design problem can be effectively solved. Simulation results show satisfactory
performance. Future work includes the extension to other boundary conditions of PDE models
and experimental validation.
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